
5 Testing

Our overall testing philosophy in this project is to test whenever human error is possible and test the
outcome of several machine learning algorithms. Most of our testing for the dataset creation tool will come
from unit testing and integration testing. Unit testing is critical especially as we are dealing with external
services that may be out of our control. This idea is also elevated to the project level – machine learning
outputs are never certain, so we much be careful about the data we feed and the inputs of the system to
ensure that even if the algorithm doesn’t give us what we expect, it’s still performing accurately. Basically,
we need to make sure all data is clean and responsibly made so the factors out of our control later will be
made in good faith. This type of testing is specific to our project as it involves every aspect of the machine
learning pipeline, unlike other machine learning projects where data is already available.

5.1 Unit Testing

Below is a table of our current (and possible future) units that will undergo unit testing. They roughly

correlate to the methods being used in source code for ease of unit testing.

Name Description Test Plan

User Input Grabs user input file and asks for

parameters for label file creation.

Give sample input and ensure file

location exists and writes correct

file output. Edge cases include

empty strings and illegal

characters that would interfere

with label file creation.

Abstract Syntax Tree Creation Creates an abstract syntax tree

from source code.

Out of our control as we use a

tool called JavaParser for this,

however, we can test it with edge

cases (empty .java files).

AST Classname Gatherer Given an AST, we traverse

through the AST nodes and

collect the line number and type

of feature.

Create Java files that do not

follow convention but can

technically compile. Test

parameters (low vs high level

classnames) are being correctly

sorted.

Label File Creation Given a classname TreeMap,

print keys and values to label file.

Test what happens when label

file cannot be created, or

dictionary is empty. Edge case

testing.

We will use JUnit tests to ensure that these unit tests work. Our project is currently using the Maven

framework which easily incorporates this testing framework.

5.2 Interface Testing

Name Description Test Plan

AST Internals Units related to internal AST creation

and traversal.

These will be testing with pre-defined

user input and sample files. This will

test the accuracy of the main driver

functionality – label creation.

User Interaction Units related to user interaction and I/O. Ensure I/O is properly accepted and

does not interfere with other

internals. Data scrubbing & cleaning.

Dealing with file location and type.

5.3 Integration Testing

Our most critical integration was getting AST into our program. As stated above, we will test edge cases for

our AST application (javaParser). These edge cases can simply be tested with Junit stubbing. We will have

consistency tests that will run against a select few files that make sure we aren’t getting any variability with

the AST output.

5.4 System Testing

Our system level testing strategy has been TDD. There should not be any lines that should not have a test

case. This will be apparent if a line of code has been deleted or altered and an error a test case will fail. We

will be using Junit and Junit libraries.

User input testing

- We will test if a valid input has been given

- We will have test for in there is invalid or no input given

AST functionality testing

- There will be junit stubs testing that methods have been called

- We will be testing that the methods have been called with expected parameters

Consistency testing

- As afore mentioned, we will be testing files and there expected output

- These tests ensure that our AST integration is functioning as expected.

Output testing

- We will test output for valid and invalid inputs

- We will test output format

- We will test output destination

5.5 Regression Testing

We will run our unit tests each time a new feature or source code is added. We cannot have the main

functionality of the label file creation application break, that being accepting user input and outputting a

label file. Everything else added, whether it be a new feature, minor tweaks, or improvements, must make

sure all unit tests pass. We will continue using JUnit for these tests.

5.6 Acceptance Testing

This is the most important part of our testing plan. We must ensure that label files are accurate and
correlate to source files accurately. If this part is inaccurate, the machine learning algorithm will have
inaccurate data and have a high bias. We will not move on until all our requirements are met. The
requirements will be set out by our client, Arushi Sharma, who will give the “okay.” One requirement
requires us to have a rate of 90% accuracy with label files. Accuracy, in this case, means not missing any
features of code.

5.7 Security Testing (if applicable)

Not applicable – no live application.

5.8 Results

We have two main testing types involved in our project, JUnit and Acceptance Testing. Below is a table
elaborating on our expected results and the requirements that will be verified by these test types.

Testing Type Expected Results Requirements Verified

Junit Testing All JUnit tests will result in pass or fail. It will

be expected that all JUnit tests pass. In any

case where JUnit tests fail we will have to

resolve the issue before pushing the code to

our live version.

JUnit Tests ensure user use

requirements are being met such as file

uploading, as well as our AST

integration. User requirements and

AST functionality must be met at all

times.

Acceptance

Testing

We require and expect our label files to be

accurate. Accuracy in this case will be defined

as 90% accuracy rate with our label files. This

is to be verified by our advisor.

Label file accuracy is critical to the

success of our project. These labels will

be needed for our machine learning

algorithms later on.

	5 Testing
	5.1 Unit Testing
	We will use JUnit tests to ensure that these unit tests work. Our project is currently using the Maven framework which easily incorporates this testing framework.
	5.2 Interface Testing
	5.3 Integration Testing
	5.4 System Testing
	5.5 Regression Testing
	5.6 Acceptance Testing
	5.7 Security Testing (if applicable)
	5.8 Results

